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The entrainment of fluids from two streams into the shear region of an incompressible 
mixing layer is dominated by the evolution of large coherent structures. However, 
fine-scale mixing of the entrained fluids mainly occurs at the interfaces of the small- 
scale turbulence. In this investigation, experiments were conducted to understand the 
properties of the small scales and to explore a method for controlling the population 
of the fine-scale turbulence. Furthermore, a dissipation scale, [, is found from the zero- 
crossing of the time derivative of the velocity fluctuations. This scale characterizes 
the most probable size of fine-scale turbulence, which produces most of the viscous 
dissipation. 

1. Introduction 
In a mixing layer, the processes by which irrotational fluids in the two streams 

are engulfed into the shear region and attain vorticity have always been subjects of 
active research. Motion of the random small scales was traditionally thought to play 
a major role, and extensive statistical studies were carried out. About two decades 
ago, Brown & Roshko (1974) as well as Crow & Champagne (1971) recognized the 
existence of spanwise organized vortical structures and their dynamic importance. 
Later, another type of organized structure, streamwise vortices, was found (Konrad 
1976). They are counter-rotating vortex pairs interlaced with spanwise structures 
(Bernal & Roshko 1986; Nygaard & Glezer 1991). The trend of research then shifted 
to investigate large quasi-periodic vortices. It is now well established that the mass 
transfer across the shear region of subsonic two-dimensional flows is accomplished 
by vortex coalescence (Winant & Browand 1974). In three-dimensional flows, the 
mass entrainment is produced by other types of unsteady evolution of the structures, 
such as the azimuthal deformation of asymmetric vortices (Ho & Gutmark 1987). 
These spanwise structures originate from Kelvin-Helmholtz instability waves. Since 
the instability is sensitive to the boundary conditions and the initial perturbations, 
the evolution of the structures can be manipulated by controlled disturbances (Ho 
& Huang 1982; Oster & Wygnanski 1982). For surveys of coherent structures 
research, one may consult Roshko (1976), Ho & Huerre (1984) and Wygnanski & 
Petersen (1987). 

After the fluids have been entrained into the shear region by the evolving large 
vortices, complete mixing of the fluids needs a large interface area. This is provided 
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by the highly convoluted interface of the small scales. Thus, the fine-scale turbulence 
should be an inseparable part of turbulence research. Utilizing knowledge of coherent 
structures and advances in signal processing, we can study small-scale turbulence from 
a new perspective which is much more informative than the statistical approaches 
practised two decades ago. Following this thought, Huang & Ho (1990) investigated 
the fine-scale transition process by using the phase-averaging and the peak-valley- 
counting (PVC) techniques on the instantaneous velocity traces. In the Reynolds 
number range allowed by their facility, the transition was found to occur around the 
vortex-merging region, in the plane containing the cores of the streamwise vortices. 

Theoretically, Liu (1981) demonstrated that a significant amount of energy was 
transferred from the mean flow to the fine scales where the growth of the large-scale 
structures reached maximum. Using a high-resolution computation domain, Rogers 
& Moser (1992) and Moser & Rogers (1993) computed the mixing layer through 
transition. They also detected that small eddies first appear in the cores of the 
spanwise structures and in the plane containing the core of the streamwise vortices. 

In an acid-base reacting flow, Breidenthal (1981) investigated the mixing process. 
He showed that the mixedness, representing the degree of mixing, rose fast with 
the downstream distance and reached an asymptotic value. When the streamwise 
coordinate was normalized by the velocity ratio and the initial instability wavelength, 
the rise in mixedness (figure 13 in Ho & Huerre 1984) was found to also occur around 
the vortex-merging region where the flow becomes turbulent. This suggests that the 
mixing transition coincides with the small-scale transition. Indeed, it is expected since 
the large number of fine scales provides the interfaces for mixing. 

In this paper, we first identify a length scale based on the extrema of the velocity 
fluctuations and then determine the scaling for the strain rate produced by the fine 
eddies. Last, a control technique is found to increase the amount of small-scale 
turbulence in the flow. 

2. Experimental arrangement 
2.1. Wind tunnel 

The experiments were conducted in an open loop wind tunnel located at the fluid 
mechanics laboratory of the University of Southern California. Air is drawn through 
the tunnel by a suction fan downstream of the test section. Four turbulence-damping 
screens span the entire stilling chamber downstream of a honeycomb panel. The 
splitter plate was constructed in sections and carefully sealed against each screen. It 
tapers uniformly through the contraction section with an angle of 2". At the end of 
the contraction section, a steel plate is attached to the end of the splitter plate to 
divide the test section into two streams, each 30.5 cm deep and 91.4 cm wide. The 
splitter plate tapers only on the low-speed side and terminates with an edge about 
0.5 mm thick. In order to obtain different velocity ratios between the lower and 
upper streams, a series of cloth meshes was placed over the upper entrance to the 
stilling chamber to produce an increased pressure drop and, subsequently, a velocity 
difference at the plate trailing edge. 

A traversing mechanism is housed in a large Plexiglas compartment resting on the 
roof of the tunnel. Probes are mounted on a traverse and are introduced into the test 
section through the low-speed stream. DC stepping motors drive lead screws in the 
traverse to move the probe in all three directions. 
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2.2. Forcing technique 
Acoustic waves were applied to force the mixing layer using a speaker array developed 
by Professor F. K. Browand at USC. A row of 17 speakers span the tunnel ceiling 
directly above the trailing edge of the splitter plate. The speakers are housed in a 
Plexiglas compartment lined with foam to damp acoustic reflections. The speakers 
are driven by individual power amplifiers which are fed by a common signal source. 
The driving signal is provided by an electronic device which can generate a sine wave 
of a desired frequency along with its subharmonics. The perturbation to the flow can 
then be a single fundamental frequency or up to three combined frequencies - the 
fundamental with its first and second subharmonics. The amplitude and the phase 
shift of each component signal can be controlled. The acoustic field generated by 
this array of speakers was uniform across the span to within 5 dB, as measured by a 
microphone at the trailing edge. 

2.3.  Instrumentation and data reduction 
A single hot wire was used to determine the mean and fluctuating longitudinal velocity. 
The wire used for small-scale detection was made of 1Ooh rhodium-platinum, 2.5 pm 
in diameter and about 0.5 mm in length. The wire used for recording the passage 
of the large scales, providing the phase reference, was made of platinum, 2.5 pm in 
diameter and about 1 mm in length. The constant-temperature anemometer had a 
flat frequency response up to 30 KHz. The hot-wire output voltage was calibrated 
against a Pitot tube. A fourth-degree polynomial fit was used with the five required 
coefficients determined by using a least-squares algorithm. 

The analog output of the wires was digitized with a PC-based data acquisition 
system; its fastest digitizing rate is 1 MHz. The actual digitizing time used in this 
experiment was 6 ps, yielding an acquisition rate of about one order of magnitude 
higher than the most-probable frequency of the small-scale structures. A fast-Fourier- 
transform (FFT) algorithm was used to compute frequency spectra for the streamwise 
velocity, and the one-dimentional spectra in wavenumber space was obtained by 
assuming Taylor's hypothesis, k ,  = 2 n f / U c .  The latter spectra were corrected for 
wire resolution, following the procedure described by Wyngaard (1968), and then 
smoothed using a spline algorithm. The three-dimensional energy spectra as well as 
the dissipation spectra were obtained from the one-dimentional spectra by assuming 
isotropic relationships as shown by Wyngaard (1968). The reference signal was filtered 
using an FIR digital filter to remove contributions from small scales, enabling easier 
detection of the zero crossings. Thus, a clear phase reference for the passage of the 
coherent structures was provided, which is needed for conditional averaging. 

The peak-valley-counting (PVC) technique was used to detect the small-scale struc- 
tures; a schematic illustration of the method is shown in figure 1. The technique 
was developed by Huang (1985) and Hsiao (1985), and its algorithm was further 
improved by Zohar (1990). The basic idea of this scheme is to mark every local 
velocity maximum and local velocity minimum for further signal processing. First, 
the d.c. component is removed to increase the resolution for examining the velocity 
fluctuations. Then the local velocity maxima (peak) and minima (valley) are deter- 
mined. The time separation between a peak-valley pair, At,  is related to a small-scale 
event, and the velocity difference corresponding to the two instants is denoted by 
Au, The time difference between each pair of successive positive zero crossings, T,, 
represents the passage of a large-scale structure. The separation between a positive 
zero crossing and a small-scale event, t,, marks the instant of occurrence of small-scale 
turbulence within the large-scale structure and is used for phase-averaging analysis. 

141 
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FIGURE 1. Schematic illustration of the PVC technique. 

3. Time-averaged flow field of the mixing layer 
3.1. Initial conditions 

All experiments were conducted with laminar boundary layers on both sides of the 
splitter plate. Evidence for the laminar state of the boundary layers at separation 
was obtained from traverses across the flow at x = 0.25 mm downstream of the plate 
trailing edge. Figure 2 compares the mean velocity distributions on both sides of the 
plate with the Blasius profile for the highest speed used for either stream. Energy 
spectra showed wide-band background noise with no preferred component (Zohar 
1990). The free-stream flow was uniform across the span to within 0.35% of the 
maximum velocity in either stream. The turbulence level in the vicinity of the trailing 
edge was approximately 0.3% . 

Most experiments were performed with free-stream velocities U1 = 2.75 m s-' and 
Uz = 12.65 m s-l, so the velocity ratio was R = ( U2- Ul)/( U2+ Ul) = AU/2u = 0.64. 
Based on the initial velocity profile with a wake defect, the initial vorticity thickness 
as determined by the method proposed by Zhang, Ho & Monkewitz (1985) was 
duo = 3 mm, and the Reynolds number was & = uGw0/v = 1540. The initial 
instability frequency was found to be f o  = 380 Hz, which corresponds to the Strouhal 
number of St0 = foS,,/D = 0.148, close to the value of 0.136 predicted by Monkewitz 
& Huerre (1982) for R = 0.7. 

3.2. Length scales 
Near the origin of the mixing layer, the Kelvin-Helmholtz instability waves grow 
with downstream distance and possess a preferred wavelength which is A,  = u/fo = 
20 mm. The streamwise coordinate is normalized by the velocity ratio and the initial 
instability wavelength, X = Rx/& following the scaling rule suggested by Ho & 
Huang (1982). Based on this scaling, the first and second vortex mergers occur 
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FIGURE 2. Boundary layer velocity profiles: +, b-1 = 6 m s- ' ;  x, U1 = 24 m s-'; 
~~ , Blasius profile. 

at X = 4 and 8 respectively (Ho & Huerre 1984). As vortex merging goes on, the 
phase de-correlation phenomenon prevails (Ho et a/.  1991), and the location of vortex 
merging jitters in space. The vortex passage frequency, f,, decreases and wavelength, 
A, ,  increases linearly with streamwise - distance. The average local streamwise spacing 
of the spanwise vortices is A ,  = U / f , .  

Close to the trailing edge, the velocity profiles exhibit a wake-like defect. The 
wake disappears within one initial instability wavelength. The conventional vorticity 
thickness, 

or the momentum thickness, 

can be used for the transverse length scale. The velocity profiles normalized by either 
H or 6,,] reach self-similarity about six initial instability wavelengths, /lo, downstream 
from the splitter plate. In this paper, figure 3, local S,,,(x) is used for normalization, 
Y = y/d&). 

The counter-rotating streamwise vortices, ribs, are stationary in the wind tunnel 
(Jimenez, Martinez-Val & Rebollo 1979). These vortices are associated with mixing 
of fluids from the high-speed side to the low-speed side and vice versa. This results 
in corrugated spanwise profiles of the averaged streamwise velocity (see figure 4) 
across the entire shear layer. This type of profile provides an easy way to determine 
the wavelength of the ribs. The spanwise wavelengths, A, ,  increases with streamwise 
distance. The ratio between the local spanwise and streamwise wavelengths is inde- 
pendent of Y, about 0.6, in agreement with the value found by Huang & Ho (1990) 
as well as Pierrehumbert & Widnall (1982). This spanwise wavelength is used to 
normalize the spanwise coordinate, 2 = z / A Z (  Y ) .  
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FIGURE 3. Transverse velocity profiles, U ( y )  : 
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FIGURE 4. Spanwise velocity profiles, U ( z ) :  (a) X = 4; ( b )  X = 8. 

4. Spatial distribution of the fine scales 
An initially laminar mixing layer will undergo transition to a turbulent flow. The 

turbulent region is characterized by very active small-scale turbulence in the shear 
layer. In the Reynolds number range of the present wind tunnel, the small scales 
start to appear downstream of the first vortex merging, X = 4. By the second 
vortex merging, X = 8, they have nearly reached an asymptotic state. The physical 
properties, distribution and evolution of these small eddies will be presented here. 
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FIGURE 5. Contours of constant (?U/Sz  (s-') in the (Y,Z)-plane: ( a )  X = 4; ( h )  X = 8 

4.1. Small-scale population in planes normul to the streamwise direction 
Huang & Ho (1990) reported that during the initial stage of the small-scale transition, 
fine scales are not uniformly distributed in the spanwise direction. They are more 
populous in the cores of the streamwise vortices. This finding was based on a few 
time traces of the velocity signals. In order to substantiate the finding, we surveyed 
the small-scale population distribution in the ( y ,  z)-plane normal to the streamwise 
direction. Two planes were mapped with 11 x 11 stations each, one plane located at 
X = 4 and the other one at X = 8. Two hot wires were used for the measurement. 
One was the sampling probe for velocity fluctuations. The other probe was situated at 
exactly the same spanwise station at the high-speed edge of the shear layer, Y = -1, 
and its signal recorded the passing phase of the coherent structures. The output of 
the second probe was used as a phase reference for phase averaging. The time record 
digitized at each station was equal to five hundred periods of the passing rollers. 
Each period was determined from a pair of successive zero crossings with positive 
slopes in the fluctuating signal of the reference wire. Data are first presented in the 
time-averaged form and then followed by the phase-averaged information denoted 

In this experiment, only the streamwise velocity was measured. Therefore, one 
part of the transverse vorticity component, 8 U/c?z, was used to indicate the location 
of the streamwise vortices. The contours of constant time-averaged d U/dz show 
the counter-rotating vortex pairs (figure 5) .  At X = 4, two pairs of vortices were 
observed in the measuring domain. But, at X = 8, only one vortex pair was detected 
in the same survey range, because the spanwise wavelength of the ribs doubles after 
vortex merging (Huang & Ho 1990). Bell & Mehta (1992) observed the same trend 
of doubling of the spanwise wavelength. In their experiment, the total streamwise 
vorticity was measured. 

The time-averaged number of velocity maxima or minima found during one period 
of coherent structures is defined as the population density, N ( x ,  y ,  z). N is a measure 
of the average number of small scales contained in a typical coherent structure passing 
the measuring station. The time-averaged iso-contours of N in the ( Y ,  2)-plane are 
plotted for two streamwise stations in figure 6. At X = 4, there are two distinct 
peaks around Z = 0.25 where N,ax = 4. These peaks coincide with the cores of 
the streamwise vortices (see figures 5a and 6a). At this streamwise location, random 

by ( ). 



146 Y Zohar and C.-M. Ho 

Z 

0 
(a)  

0.5 

Z 

0 
(b) 

0.5 -0.5 0.5 

1 

Y o  

-1 

-12.5 0 -12.5 -25 0 25 
z (mm> Z ( m )  

FIGURE 6. Contours of constant N in the (Y,Z)-plane: (a) X = 4; ( b )  X = 8. 

fine-scale turbulence has not occurred yet. The measured small scales are the folds of 
the coherent structures. Further downstream, X = 8, the small-scale transition takes 
place and the peak value of N has increased by one order of magnitude to more 
than 50. The largest number of small scales in the cross-stream direction coincides 
with the maximum mean streamwise velocity shear, (dU/dy),ax. In the spanwise 
direction, contours of constant population density of small scales are modulated in 
the same way as the average velocity, u. The modulation is due to the presence of 
the streamwise vortices. 

With phase-averaging and PVC techniques, we can examine the phase-averaged 
population, ( N ) ,  of small scales at a cut in relation to the passing spanwise structures. 
Figure 7 shows the iso-contours of ( N )  in a (y,z)-plane along the core of a roller 
(figure 7b,d) and along the braid between rollers (figure 7a,c). The value of phase- 
averaged population, ( N ) ,  is not an intrinsic number, because it is equal to the 
time-averaged value of N divided by the number of bins used in the phase average. 
The number of bins is chosen to be eight in this experiment. Evidently, at both 
streamwise stations, X = 4 and 8, the population of small scales along the core 
of the rollers (figure 7b,d) is higher than that across the braid (figure 7a,c). In each 
cross-section, the pattern of the small-scale population resembles the pattern obtained 
for the time-averaged values (figure 6). 

Around the first vortex merging the number of occurrences of fine-scale turbulence 
found inside a roller or a rib core is twice as large as that found between the cores. 
Recent numerical simulations by Moser & Rogers (1993) agree with this finding. 
Near the second vortex merging, around the end of the small-scale transition, the 
fine-scale turbulence spreads around the entire roller and does not concentrate only 
in the cores of the ribs. 

4.2. Small-scale population in planes normal to the spanwise direction 
By assuming Taylor’s hypothesis, the pseudo-streamwise coordinate can be repre- 
sented by multiplying the time with a convection speed. Here, u is taken as the 
convection speed. Each period represents a wavelength of one roller, Ax.  Therefore, 
the normalized streamwise distance, ( X )  = u t / A i , ,  is between 0 and 1. 
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FIGURE 7. Contours of constant ( N )  in the (Y,Z)-plane: (a) X = 4, between rollers; ( b )  X = 4, 
roller plane; ( L . )  X = 8, between rollers; ( d )  X = 8, roller plane. 

The rollers are structures of coherent spanwise vorticity which has two components, 
oz = c%/dx - du/dy. Again, only the component containing the streamwise velocity, 
du/dy, was used to indicate the structure. The phase-averaged streamwise velocity, 
(u) ,  in the plane containing the core of the rib, 2 = 0.25, was obtained at X = 8. 
Figure 8(a) shows the iso-contours of d(u)/dy. The identities of the individual rollers 
are smeared out at the second vortex merging location, X = 8, and only the resulting 
core is noticeable around ( X )  = 0.5. The phase-averaged streamwise derivative of 
u, C‘(u)/ax, is the component of the strain-rate field induced by the roller shown in 
figure 8th). The pattern obtained here is very similar to the strain rate of a single 
vortex. The centre of the core is a saddle point with antisymmetric strain-rate field in 
the four quadrants. 

The phase-averaged small-scale population density in the roller is shown in fig- 
ure 8(c). The largest number of  small scales in the (x,y)-plane is found around the 
core of the roller where the spanwise vorticity is maximum corresponding to the 
saddle point in the d ( u ) / ? x  field. The PVC technique registers the local velocity 
extrema, u h  and u ~ ,  and the instants, t h  and tl, correspondingly. Hence, an estimation 
of the strain rate produced by the small-scale turbulence, 
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can be obtained. It should be noted that this quantity is not the true strain rate, 
du/dx, which consists of the strain rate contributed by both the large and the small 
scales. The constant contours of Au/Ax, figure 8(d), show that the highest-value is 
located at the same region as the high concentration of small scales, ( N ) .  If the 
small scales are approximately isotropic, the level of Au/Ax is an indication of the 
dissipation rate. Hence, it is expected that contours of ( N )  and Au/Ax exhibit similar 
spatial distribution. 

4.3. Streamwise variation of small-scale population 
Along the streamwise direction, the population of the small-scale turbulence must 
increase while the flow changes from a laminar to a turbulent state and eventually 
becomes a fully developed turbulent flow. The population density was measured with 
a hot wire traversed in the streamwise direction at Z = 0 and at Y where U = n. 
Since the passage frequency, f x ,  decreases with x, the duration of signal sampling, 
Td, was increased with x such that Td = 500/fx. Therefore, five hundred rollers were 
sampled at each streamwise station. The number of small scales passing the hot wire 
during Td was obtained by the PVC technique. The ratio between the number of 
small scales and the number of local passing rollers, N ,  is plotted in figure 9. The 
value increases sharply downstream from X = 4 due to transition and then increases 
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linearly with x. Hence, the amount of small-scale turbulence per large coherent 
structure increases with streamwise direction. 

A time scale which is independent of the streamwise distance is the period of the 
initial instability waves. The number of small scales accumulated during Td is then 
normalized by the number of initial instability waves during thz same duration. The 
resulting value, fi, is plotted in figure 9. An abrupt increase of N occurs downstream 
of X = 4 and it reaches a maximum around X = 8. Further downstream, the values 
of fi decrease very slowly. It implies that the size of the small-scale turbulence does 
not change significantly with x. In other words, the linear increase of N is mainly 
due to the increasing size of the coherent structures rather than the decreasing size 
of the fine-scale eddies. 

5. A dissipation scale of the fine-scale turbulence 
5.1. Length scales of Jine-scale turbulence 

In turbulence research, two microscales, the Kolmogorov scale and the Taylor scale, 
are used to characterize the size of fine-scale eddies producing viscous dissipation. 
The Kolmogorov scale is defined as 

y = ( V 3 / € ) ” 4  (5.1) 
where v is the kinematic viscosity and 
flow (Tennekes & Lumley 1972), 

is the rate of dissipation. For a local isotropic 

E = 15v(d~’/ax)~ (5.2) 
where u’ is the streamwise fluctuating velocity. The Kolmogorov scale is considered 
to be the smallest scale in turbulent flows. 

From correlation of velocity fluctuations, an osculating parabola can be matched to 
the correlation curve at its origin. The distance between the origin and the intersecting 
point of the osculating parabola with the horizontal axis is defined as the Taylor 
microscale. Based on this definition the Taylor scale, 1, can be obtained as follows: 

i2 = (u*)2/(du’/ax)2 (5.3) 
where u* is the r.m.s. value of the fluctuating streamwise velocity, u’. 

The high-frequency velocity fluctuations (see figure 1) are caused by the fine-scale 
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FIGURE 10. Frequency histogram of fine eddies at x = 8. 

turbulence. The PVC technique registers the duration, At, of these fluctuations. These 
durations represent a direct measure of the time scales of the eddies passing the 
sampling probe. We then examine the histogram of the values of At. More than 
10000 of such events were used to produce the histogram. If the histogram is flat, it 
shows that the fine-scale turbulence has a wide distribution without a characteristic 
time scale. On the other hand, if a peak can be detected in the histogram, it means 
that small-scale turbulence has a preferred scale. Indeed, it is interesting to find out 
that we do observe a pronounced peak around 12000 Hz in the histogram shown in 
figure 10. A length scale, (, is defined by multiplying the time scale located at the 
peak, (f,)-', with the convection velocity, , 

( = U/f,. (5.4) 

Here, f, is the peak frequency where dP(f)/df = 0. The convective velocity at this 
point in the flow field is 7.7 m s-'. Thus, the length-scale value is ( = 0.65 mm, while 
the local streamwise wavelength is 80 mm. So at this location ( X  = 8, Y = 0 and 
Z = 0.25), this scale for the small eddies is about two orders of magnitude smaller 
than the scale of the rollers, indicating large separation between the scales of the 
small and the large eddies. 

The value of the Kolmogorov scale at X = 8, Y = 0 and Z = 0.25 is 0.062 mm, as 
obtained from (5.1). The Taylor scale calculated from (5.3) at this location is 2.2 mm. 
So, the microscale [ is about one order of magnitude larger than the Kolmogorov 
microscale and about 3.5 times smaller than the Taylor microscale. 

5.2. The spatial evolution of the microscale 5 
In a mixing layer, the Reynolds number increases with the streamwise distance. The 
dependence of 5 on Reynolds number is examined as a function of the streamwise 
coordinate. The value of [ increases with x at a very slow rate as shown in figure 11. 
The length scale of the large vortices, A x ,  is a linear function of x and increases at 
a much faster rate than (. The Kolmogorov and Taylor microscales are determined 
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in two ways. The values directly obtained from the definitions, (5.1) and (5.3), are 
plotted in figure 11. The separation between these three microscales is obvious. Both 
Kolmogorov and Taylor scales also grow slowly with the streamwise coordinate. The 
other way of estimating these two scales is from the relations between the microscales 
and the large scale, 

A is a constant and is about one. Equations (5 .5)  and (5.6) are valid under the 
assumption of local isotropy (Tennekes & Lumley 1972). These values match the data 
obtained from (5.1) and (5.3) very well downstream from X = 8. This is supporting 
evidence for the local isotropy assumption. 

The functional relationship between c and the other two scales, or its dependence 
on ReA is an interesting question. Within the Reynolds number range obtainable in 
this facility, the ratio c / y  is about 10. The other ratio, [/i, is not a constant. The 
reliability of the result is limited by the range of the Reynolds number based on a 
microscale, say ReA. In most of the low-speed facilities, the Reynolds number based 
on the integral scale can be varied by about one order of magnitude, but it is only 
factor of three for the Reynolds number based on the Taylor microscale. The exact 
proportionality between c and y remains to be determined by more tests when a 
wider range of ReA becomes achievable. 

The variation of the microscale, <, in the cross-stream direction, y ,  is shown in 
figure 12. The data were taken at X = 8 and Z = 0.25. Within the shear region, 
y / 6 ,  < rt0.5, the value of [ is practically constant. At the end of the small-scale 
transition, the small-scale turbulence is fairly homogeneous inside the shear layer. 
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However, at the outer region of the mixing layer, y / 6 ,  < -0.5 and y / 6 ,  > 0.5, the 
interfaces of the large coherent structures start to contribute to the velocity traces 
analysed by the PVC technique. Hence, the apparent size of the eddies increases at 
the outer edges of the shear region. 

5.3. Viscous dissipation 
The Reynolds numbers based on microscales are very small, and viscous effects are 
dominant in this range. Hence, Kolmogorov and Taylor microscales have always been 
associated with energy dissipation. We would therefore like to identify the role of the 
microscale, e ,  in the viscous dissipation. 

The dissipation spectrum, D(k) ,  can be obtained from the three-dimensional energy 
spectrum, E(k) ,  as follows: 

The three-dimensional energy spectrum was obtained from the measured streamwise 
velocity component, u(t), following the procedure described by Wyngaard (1968). 
In Wyngaard’s analysis, local isotropy is assumed. In the fully developed region, 
the fluctuating levels of the three velocity components show the isotropic property, 
u* = u* = w*, (Wygnanski & Fiedler 1970). In the same facility as the present 
experiment, Huang & Ho (1990) showed that the fluctuation levels of the three 
velocity components are about the same downstream from the small-scale transition 
region, X = 8. Both spectra, energy and dissipation, obtained at X = 8 and Y = 0 are 
shown in figure 13. The Reynolds number based on the Taylor scale at this station is 
ReA = h * / v  = 310. At X = 8, the roll-off exponent of the spectrum reaches -5/3 
(Huang & Ho 1990). It indicates the existence of a well-established inertial subrange 
which is a necessary, though not sufficient, condition for local isotropy. Furthermore, 
the separation between the peaks of the two spectra, see figure 13, is about two orders 
of magnitude, which provides more support for assuming local isotropy. 

When the values of the Kolmogorov and Taylor microscales are indicated on the 
wavenumber axis, k ,  the Kolmogorov scale appears at the far end of the dissipation 
spectrum. This follows the definition of the Kolmogorov scale which represents the 
smallest eddies surviving from the viscous dissipation. The Taylor scale appears on 
the other side of the dissipation peak. These two observations are consistent in spectra 
measured at other spatial locations. Neither of these two scales coincides with the 
peak of the dissipation spectrum, k,; k p  identifies the size of the fine eddies which are 
responsible for most of the viscous dissipation. An interesting point can be observed 
when the microscale c is indicated in figure 13. c is the scale which does coincide 
with the peak of the dissipation spectrum. In other words, the new microscale, c, is 

D ( k )  = k2E(k) .  (5.7) 
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the typical length scale of small eddies producing energy dissipation. This result is not 
really surprising, if we review the way of determining the value of {: it represents the 
length scale of the most probable eddies (figure 10) defined from the local velocity 
extrema, [U, Ax]/ [u , , ,  - uMfn]. The value of Ax/[u,,, - u,,,] to some extent represents 
the instantaneous velocity derivative which is related to the viscous dissipation ((4.1) 
and (5.2)). 

In this study, only the streamwise velocity component was measured. In a study of a 
numerically simulated mixing layer (Zohar et al. 1990), all three velocity components 
were examined. The dissipation scales of the three velocity components are the same. 
In an experimental work by Foss (1994), all three velocity components were measured 
and the measured length scales confirm the numerical simulation result. 

The relationship between the new microscale and the dissipation spectrum has been 
tested in other turbulent flows as well. Ho & Zohar (1996) investigated a plane mixing 
layer, a wake behind a cylinder and a plane boundary layer. Indeed, the microscale 
defined by the PVC histogram, i, was found to be equal to the scale of maximum 
dissipation in all three turbulent shear layers. 

The physical meaning of the new dissipation scale, {, can be examined from 
energy balance considerations. The rate of the energy extracted by the large coherent 
structures from the mean flow is 

dE - d (u")' - (u*)l  
- - - ( p , u , )  x __ - ~ 

dt dt A,/u* A ,  

and the viscous dissipation by the small scales is 

du,du, (u*)? 
dx,dx, it,? ' 

€ = v- - \ l - .  (5.9) 

A,, is the length scale of small eddies. In a stationary turbulent flow, (5.8) should be 
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FIGURE 14. Histograms of the stretching and compression rate of fine eddies at X = 8: 
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balanced by (5.9), 

(5.10) 

The r.m.s. of the streamwise velocity, u*,  and the roller wavelength, A x ,  at the 
measuring location are 2.1 m s-' and 8 cm respectively. The scale of the small eddies 
needed to maintain the energy balance is 

A,  = ( v L I , / u * ) ~  (5.11) 

and equals 0.75 mm which is very close to the value of [ = 0.65 mm. This is more 
evidence that [ does represent the dissipation scale. 

5.4. Stretching or compression rate of jine-scale turbulence 
The quantity mentioned in the previous section, [u,, - umin]/Ax = Au/Ax, is a 
measure of the strain rate produced by small scales. However, one should be aware 
that it is not the conventional strain rate, au/dx, which is a true derivative of velocity 
fluctuations and contains contributions from both large and small scales. The PVC 
technique biases the contribution of the small scales to Au/Ax. Furthermore, Au/Ax 
is not a true derivative. When the value of Au/Ax is positive/negative, it represents 
the stretching/compression rate produced by small scales in Ax. When the probability 
density distributions (p.d.f.) of both the positive and the negative values of Au/Ax 
are plotted, figure 14, they exhibit pronounced peaks. This implies that the straining 
rate produced by the small scales has preferred values. Furthermore, the preferred 
stretching rate is the same as the preferred compression rate. 

5.5. Scaling of the small-scale properties 
The p.d.f. of Ax and the p.d.f. of Au/Ax have bell-shaped distributions. We can 
examine the joint p.d.f. in two dimensional space. The iso-contours of the joint p.d.f. 
at X = 8 and Y = 0 are shown in figure 15, where a single peak is evident. It has 
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FIGURE 15. Joint histogram of fine-scale wavelength and strain rate at X = 8. 

already been shown that the peak of the Ax-p.d.f. corresponds to the peak of the 
dissipation spectrum, k,. Therefore, if the horizontal axis of figure 15 is normalized 
by k,, the peak value should be one. 

At this moment, the scaling of the vertical axis is not defined yet. If we use 
the velocity difference across the shear layer, AU, along with the initial instability 
wavelength, A,, as the scaling parameters, the peak value of the normalized Au/Ax is 
also around unity. This is a very interesting result as it shows that the most probable 
straining rate produced by the small scales equals the global straining rate produced by 
the mean shear. 

6. Control of finite-scale turbulence 
The PVC technique developed here can identify individual fine-scale turbulence. 

In the previous sections, many different quantitative ways of examining small-scale 
turbulence activities, e.g. instantaneous information from the pulse train or the 
statistical quantities, have been demonstrated. This method allows us to precisely 
compare the small scales in a mixing layer under various operating conditions. For 
example, previous investigations have shown that a low level of forcing introduced at 
the trailing edge has a profound effect on the evolution of the organized structures 
in mixing layers (Ho & Huang 1982; Ho & Huerre 1984; Wygnanski & Petersen 
1987). Whether fine-scale turbulence can be manipulated by active forcing is not 
known. Using the PVC technique to investigate the small-scale turbulence in natural 
and forced mixing layers can provide a definitive clue to the answer to this question. 
In this study, we have found that the two-dimensional forcing technique developed 
to control the spanwise rollers can also affect the production of small scales. In 
the case of influencing the evolution of the large structures, low-level perturbations 
can be effective. However, for the case of influencing the population of small scales, 
high-level subharmonic perturbations, of more than 100 dB acoustic intensity, are 
needed. 
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6.1. Small-scale control by the fundamental frequency 
The flow was acoustically excited by an array of loudspeakers ($2.2). Hydrodynamic 
perturbations caused by the acoustic forcing are known to be small. As expected, 
the velocity fluctuations associated with the acoustic forcing at the trailing edge of 
the splitter plate are so low that no difference is observed between the forced and 
the natural power spectra (Zohar 1990). The velocity perturbations are within the 
background noise. We used the acoustic intensity output of the speakers as the 
reference for the forcing amplitude. 

The histogram of fine scales determined by the PVC technique for the forced case 
at X = 8, Y = 0 and Z = 0 is shown in figure 16. The histogram has the same 
profile as the one obtained for the natural case (figure 10). The peak frequency is 
also at 12000 Hz. The most probable length scale, (, remains unchanged. This is 
not surprising because the size of the dissipation scale is determined by the Reynolds 
number and hence should not be affected by forcing. However, forcing does increase 
the amount of small-scale turbulence significantly. In each passing coherent structure, 
the small-scale population, N ,  increases from 50 in the natural case, to 70 in the forced 
case, at X = 8. Hence, the two-dimensional forcing not only affects the evolution of 
the coherent structures but also enhances the production of small scales. 

In order to study the dependence of small-scale generation on the forcing level, 
the following experiment was conducted. The fundamental mode, f o  = 380 Hz, was 
excited at four different levels, 100 dB, 110 dB, 120 dB and 130 dB. For each level, 
the maximum number of small eddies in a given cross-section was found. The same 
process was repeated for a number of streamwise stations. The range examined here 
extended from X = 3, where small eddies just start to appear, to X = 20, where the 
flow is expected to be fully developed. The number of small eddies normalized by 
the initial number of coherent structures, fi, is shown in figure 17. It indicates that 
between X = 3 ̂ and X = 5 the number of small eddies increased with the forcing 
level. However, N,,, = 16 seemed to be the saturation level. Attempts to increase this 
number by stronger forcing at the fundamental frequency yielded no higher number 
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than 16. For all levels of fundamental forcing the maximum value of fi appeared 
at around X = 5. After the peak, the number of fine eddies decreased gradually to 
fi = 8 around the third vortex merging location, X = 16. Further downstream, all 
the curves collapsed onto a single one. 

6.2. Small-scale control by fundamental and subharmonic frequencies 
Two-dimensional forcing of a mixing layer has a limited range of influence along the 
streamwise direction. Exciting the fundamental mode alone leads to a phase locking 
of the roll-up process only. Adding the subharmonic to the forcing signal results 
in localizing the first merging process as well. Therefore, the zone of influence of 
the forcing can be extended by forcing fundamental and higher subharmonics, as 
successive vortex mergings become phase locked. Downstream from that location, 
phase de-correlation (Ho et al. 1991) will occur. The physical mechanism of the phase 
de-correlation is due to the detuning in the subharmonic resonance process. 

The small-scale control experiment was repeated with the forcing signal a combi- 
nation of the fundamental, .fo = 380 Hz, and the subharmonic, fo /2  = 190 Hz. Each 
component consisted of an amplitude equal to the highest fundamental forcing level, 
i.e. 130 dB. The results are compared in figure 18 with the unforced case and the 
case of forcing the fundamental frequency at the highest amplitude. It  is obvious that 
each curve peaked at a different streamwise location. The zone of influence indeed 
depended on the frequency content of the perturbations. When the flow was forced at 
the fundamental only ($6.2), the peak of N occurred at X = 4, where the first vortex 
merging took place. The peak of fi moved to the second vortex merging location, 
X = 8, for flow perturbed at fundamental and the first subharmonic. The zone of 
influence for the forced generation of small scales seemed to extend to the next vortex 
merging region compared with the phase de-correlation findings. This could have 
been due to the small-scale production in the present controlled case resulting from 
the interaction of the spanwise coherent structures which took place downstream 
from the phase-locked position of the spanwise structures. 

The maximum value of fi detected in both forced cases is 16, and is 1.5 times 
greater than the peak value for the natural case, gmaX = 11. This means that by 
forcing the shear layer, the small-scale population can be increased by as much as 
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50% relative to the unforced case. Moreover, it seems that the maximum value of fi 
about 16, as it was obtained in all the tested forcing combinations. It is interesting to 
note that the ratio between the initial instability wavelength, A. = 20 mm, and the 
dissipation scale, [ = 0.65 mm, is about twice the peak value of 16. This suggests a 
simple explanation for the saturation value based on geometrical considerations. The 
initial instability wavelength, Ao, is dictated by the initial velocity profile. The scale 
of the small eddies, i, is dictated by the amount of energy to be dissipated, which 
is independent of forcing. Obviously, only a finite number of small eddies with a 
given length scale can be contained in the space occupied by a large eddy with a 
given size. Assuming that the sm$l eddies are separated by a distance comparable to 
their size, the upper bound for N should be given by the ratio &/25 = 15.5. Thus, 
the saturation level represents a state where the small eddies spread throughout the 
roller, beyond which their population cannot be further increased by forcing. Far 
downstream, the asymptotic level of small-eddy activity represents an equilibrium 
state to which the flow settles after the overshoot response in the transition region. 
The small-scale population, A, attains an asymptotic value of 8. Since forcing has 
a limited zone of influence, it is expected that beyond that zone, the forced mixing 
layer will approach the unforced layer. Therefore, the asymptotic state should be 
independent of the forcing. 

The distributions of the small-scale population in the plane normal to the stream- 
wise direction (y,z-plane) are examined for the case forced by fundamental and 
subharmonic frequencies. The time-averaged number of small eddies contained in a 
local passing large eddy is shown in figure 19 for two stations, X = 4 and 8. The 
patterns are very similar to those obtained at the same streamwise stations in the 
absence of forcing, figure 6. At the upstream station, X = 4, the highest number of 
small eddies, N,,, = 10, is found around the cores of the ribs and is greater by a 
factor of 2.5 than the value for the natural case. The value found at the downstream 
station is N,,, = 70, so the forcing has increased the maximum number of small 
eddies by about 50% compared with the unforced case (figure 6b). 
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FIGURE 19. Contours of constant N in the (Y,Z)-plane for subharmonic forcing. 

(a )  x = 4; ( b )  x = 8. 

6.3. Effects of' other types ofjorcing 
It is a bit surprising to find that a two-dimensional forcing can have such a strong 
effect on the generation of small scales. This finding might help in understanding the 
production mechanism of fine scales, an issue which still remains unsettled. Many 
features associated with small-scale generation have been observed. For example, the 
Reynolds number needs to reach a certain level. The initial disturbance level also 
plays a role (Breidenthal 1981). During the transition, the small-scale turbulence 
is first found in the core of the newly merged spanwise vortices and in the plane 
containing the streamwise vortices (Huang & Ho 1987, Moser & Rogers 1992). 

An attempt to control the small-scale population by forcing the streamwise vortices 
was made by placing small passive protrusions at the trailing edge of the splitter 
plate. The spanwise separation of these protrusions was the same as the spanwise 
wavelength of the streamwise vortices (Lasheras, Cho & Maxworthy 1986). We could 
not find any increase in the fine-scale eddy population. We also tried active forcing 
of the streamwise vortices by replacing the passive protrusions with piezoelectric 
actuators. The driving frequency was the same as the most preferred frequency, f,. 
Again, no effect on the small-scale population was observed. 

A recent paper discussing the generation mechanism of small turbulence (Schoppa, 
Hussian & Metcalfe 1995) could explain the effectiveness of high-level two-dimensional 
forcing. They suggested that the outburst of small scales is caused by an instability 
associated with the core of the spanwise structures and that streamwise vortices do 
not play a role in  this process. The instability is related to the amplification of the 
non-uniform core size and the meridional flow within these structures. The strong two- 
dimensional perturbation changes the vorticity distribution of the spanwise structures. 
The core instability could be modified and hence change the small-scale population. 

7. Brief summary 
During the past two decades, the efforts invested in examining the properties of, 

and in manipulating, coherent structures have led to major advances in turbulence 
research. At the same time, experimental tools such as instrumentation and signal- 
processing techniques, have been significantly improved. Equipped with the concept 
of coherent structures and the advanced experimental methods, we studied the small- 
scale turbulence from a perspective different from the traditional statistical approach. 
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A dissipation microscale has been identified and a control technique of generating 
small-scale turbulence has been applied in this investigation. 

The peak-valley-counting (PVC) technique identifies the local maxima and minima 
of the velocity fluctuations. Both the velocity extrema values and their instants of 
occurrence are registered. Based on the magnitude and phase information of fine- 
scale turbulence, the distribution of the small scales in relation to the large eddies 
is examined. The small-scale population increases rapidly in the transition region, 
X = 4 to 8. They are concentrated inside the core, in the region with the highest 
velocity shear. 

A pronounced peak was found in the histogram of the length of time between 
the velocity extrema, which implies that small scales have a preferred length scale. 
Furthermore, this length scale is almost constant within the velocity shear region. The 
most interesting feature is that this microscale coincides with the wavelength of the 
dissipation-spectrum peak. In other words, this microscale characterizes the typical 
eddy size which produces most of the viscous dissipation. 

The quantity, [u,,, - umin]/Ax = Au/Ax, is a measure of the stretching or compres- 
sion rate produced by small scales. The histogram of this quantity also has a clear 
peak. We have found that the peak value of Au/Ax equals the global strain rate, 

The spanwise forcing technique (Ho & Huang 1982) has been found to be very 
effective in controlling the evolution of the spanwise structures. The spanwise forcing 
method, in fact, is also an effective control technique for enhancing the production of 
fine-scale turbulence in the transition region. However, the forcing level needs to be 
above a certain threshold and the small-scale population is a function of the forcing 
amplitude until it reaches a limiting value. Along the streamwise direction, beyond 
the zone of influence of the forcing, the small-scale populations of the forced and the 
unforced mixing layers approach the same asymptotic state. 

Au/&. 
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